
Development of flight baggage test service through

object detection

1. Purpose

The number of passengers on domestic flights was about 61 million in 2015 to about 90 million in

2019. It has increased about 1.5 times in four years. As the number of people on board increases,

the number of people who experience inconvenience in the process of checking their luggage is

also increasing. Anyone who has ever used an airplane must have had the experience of carrying

things on board and throwing them away just before boarding the plane. In order to avoid this

experience, existing airplane passengers wanted to determine whether certain items should be

allowed into the aircraft during carrier packing process. To do so, they had to first come up with

keywords for the item, then go to a website that offered related services and search for permission.

There was inconvenience in going through these two processes, and there were also many items

that did not appear in the keyword search. To eliminate this inconvenience, we created an application

that tells us whether the item can be brought into the plane through object recognition technology.

2. Period

April 10, 2020 to June 24, 2020

3. Position

This project team consisted of three developers and one mentor. As a project leader, I have

contributed to all phases of the project. The project consisted of a total of five stages: Planning and

Analysis, Database, Algorithm, UI, and Test. I was the founder of the project and participated in

project planning, requirements collection and analysis, and function elicitation during the Planning

and Analysis phase. At the Database stage, I was in charge of designing databases and establishing

DBs about carry-on restriction by country. Algorithm design and text extraction functions were

implemented in the algorithm stage as well, and app UI design and composition were taken charge

in the UI stage. In the test phase, I was in charge of testing about the lowest SDK version (24 SDK)

set in the project and conducted the evaluation and modification of the test with our team mentor.

4. Skills

Before entering the project design phase, we defined requirements, UseCase diagrams and system

schemes to further specify the project. This was organized on Wiki to enable storage and sharing.

In addition, the WBS structure chart, Gantt chart, and expected UI were created to efficiently carry

out the project.

First, at the project design stage, we compared the recognition rate and reliability of the Tensor

Flow and Cloud Vision API to provide high-quality services to users, and as a result, we implemented

the object recognition function using the Cloud Vision API. Next, for real-time processing, we used

Firebase to create a database for each country and airline for carry-on. The UI has configured the

top bar for user feedback, country and airline settings, and the bottom bar for how to search for

cameras, galleries, and keyboards.

We developed the app by Java through the Android studio. In the actual development stage, Github,

Slack, and wiki were used to work together with team members. Development meeting was

conducted using Slack, and developers developed together using Github. In particular, it was used

as a venue for sharing works such as pushing Github and sharing documents through Slacks.

5. Implement method and Algorithm

1) System Scenario

2) System Structure

3) WBS

4) UseCase Diagram

5) UML Diagram

(1) Class Specification

① Class MainActivity

Class Name MainActivity

Class Type Class

Class Overview Manage the overall operation of the application.

Parent Class

Attributes

- CLOUD_VISION_API_KEY: String

+ FILE_NAME: String

- ANDROID_CERT_HEADER: String

- ANDROID_PACKAGE_HEADER: String

- MAX_LABEL_RESULTS: int

- MAX_DIMENSION: int

- TAG: String

- GALLERY_PERMISSIONS_REQUEST: int

- GALLERY_IMAGE_REQUEST: int

+ CAMERA_PERMISSIONS_REQUEST: int

+ CAMERA_IMAGE_REQUEST: int

- mImageDetails, tv_option1, tv_option2, tv_option3: TextView

- mMainImage: ImageView

- btn_album, btn_camera, btn_keyboard, btn_nation: Button

- arrayList: ArrayList<Stuff>

- database: FirebaseDatabase

- databaseReference, databaseReference2: DatabaseReference

- nation: int

Operations

onCreate(Bundle savedInstanceState): void

// Create UI and associate DB with users.

+ startGalleryChooser(): void

// Obtain permission to retrieve the gallery's photo information and associate it with the

user's gallery.

+ startCamera(): void

// Obtain permission to shoot the camera and connect the camera with the user.

+ getCameraFile(): File

// Bring the pictures taken with the camera.

onActivityResult(int requestCode, int resultCode, Intent data): void

// Uploads object information from the user-supplied image forms.

+onRequestPermissionsResult(int requestCode, @NonNull String[] permissions, @NonNull

int[] grantResults): void

// Receive access to the user's chosen method of object information delivery.

+ uploadImage(Uri uri): void

// An image processed to suit the form is provided to the analysis algorithm.

- prepareAnnotationRequest(Bitmap bitmap): Annotate

// Connect the image analysis algorithm.

- callCloudVision(Bitmap bitmap): void

// Analyze the entered image.

- scaleBitmapDown(Bitmap bitmap, int maxDimension): Bitmap

// Resize the provided image to fit the form.

- convertResponseToString(BatchAnnotateImagesResponse response): String

// Transmits the response to the image into a String format.

- SearchbyKeyboard(String result): void

// Object information corresponding to the keyword entered is retrieved from the DB.

② Class PackageManagerUtils

Class Name PackageManagerUtils

Class Type Class

Class Overview Perform a utility to obtain SHA1 signatures for the application.

Parent Class

Attributes

Operations

+ getSignature(@NonNull PackageManager pm, @NonNull String packageName): String

// Obtain encryption signatures to work with Google CloudVision APIs.

- signatureDigest(Signature sig) : String

// To process a signature into a fixed form.

③ Class PermissionUtils

Class Name PermissionUtils

Class Type Class

Class Overview Perform a utility to obtain permission other than the app.

Parent Class

Attributes

Operations

+ requestPermission(Activity activity, int requestCode, String… permissions): boolean

// Request non-app permissions and return results.

+ permissionGranted(int requestCode, int permissionCode, int[] grantResults): boolean

// Return information to request non-app permissions.

④ Class Stuff

Class Name Stuff

Class Type Class

Class Overview Form of information stored in DB

Parent Class

Attributes

- name: String

- option1: String

- option2: String

- option3: String

Operations

+ getName(): String

// Get name.

+ setName(String name): void

// Register the name received.

+ getOption1(): String

// Get information about carry-on.

+ getOption2(): String

// Get information about checked baggage.

+ getOption3(): String

// Get other information.

6) UI

Main Select Nation

Select Airline Select LABEL/LOGO

Send Image

Send Keyword

Check Result

User Feedback

